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Faster Impedance Estimation for Coupled Microstrips

with an Overrelaxation Method

R. DAUMAS, D. POMPEI, E. RIVIER, AND A. ROS

Absfracf—Using the Frankel–Young method [1], [2], fast es-
timation of the potential distribution f or a microstrip structure is ob-
tained when an accelerating factor ~ is introduced in the finite-

differences (relaxation) method. It is possible to calculate such a

factor by an iterative technique, but the time of computation needed

to find w annihilates the theoretical gain.

In this short paper, the authors present a method which gives an

analytical expression for ~. The realistic case examined here, as an
illustration, is that of the suspended microstrip couplers for which

odd and even impedances are the interesting parameters.

Given an analytical expression for CO,the overrelaxation method

aPpears as a very powerful and attractive method for finding the
solution of any type of microstrip structure.

1. INTRODUCTION

The integrated technology using microstrips provides new pos-
sibilities for microwave designs. A very important one is the realiza-

tion of compact low-cost dispersive lines used as group-velocity cor-
rectors for digital telecommunications. The basic component of such

a system can be reduced to a microstrip coupler.
In the last few years, several authors [3 ]– [7 ] have treated some

particular problems using different methods, but they are generally

complicated and applicable to particular geometrical cases.

A solution using finite differences has been proposed by Green [8]

and others. An’ application has been given by Brenner [9] to the
simple case of the suspended microstrip line and by Gupta [10] to

the idealized problem considered by Cohn [3], i.e., the suspended
coupler in a homogeneous dielectric such as air. That problem is

purely theoretical, with no substrate sustaining the strips.

However, as emphasized by Smith [6], the methods using finite

differences appear as inadequate because the very fine mesh required
for the accuracy leads to difficulties in the convergence. Clearly, it

means that the computing time becomes prohibitive and the com-

puter memory becomes saturated.

Nevertheless, the use of the finite-differences method should
become a very fruitful approach if an accelerating factor taking into

account the geometry of the problem could be Injected in the pro-
gram.

In this short paper, the problem of the research of such a factor
is solved and applied to the case of the suspended coupler with a

dielectric substrate of constant e. sustaining the strips.
In the finite-differences method, we define in a geometrical domain

the potentials at the nodes of a net (Fig. 1). The relations between
all the potentials can be written

(’4)(W) = (B). (1)

System (1) can be solved by an iterative process [1], [2], [11]

wri+ting

*,+, = M*L + c. (2)

The Fran.kel–~oung method introduces the accelerating factor ~.
An optimal value of co—uOPL gives the fastest convergence. We have
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Fig. 1. Geometrical parameters definition.

kilf = sup 1 – ;: (4)

where M are the eigenvalues and ak~ are the diagonal elements of A.

II. APPLICATIONS OF THE FRANKEL–YOUNG METHOD

TO A SUSPENDED M ICROSTRIP COUPLER

A. Resolution of the P~oblern for an “Empty Box” [11]

Using the finite-differences method and for the second-order

approximation, the Laplace’s equation is reduced to

S7(1, J)=+[v(I, J–l)+w(I,.7+l)+w(I- 1,-7) +v?(I+l,.7)]. (5)

The variable changing ~(1, -T) =X%, with i = (N–2)(1–2) +1–1,

allows us to have the unknowns indexed by a continuous sequence

(Fig. 1).
The ith equation of the system (1) will be written

4X, –X,_I– X,+l– X,~N_Z– X;.NhZ=0, l<i<(M–2)(N–2).

The matrix AI (Fig. 2) can always be split into two symmetrical tri-
diagonals—matrices AI and A z, the main diagonal elerneuts being

LUk/z such that A =AI +-42.

Itcan be shown that A, and Az have the same eigenvectors. Let

V be one of these eigenvectors and ~, and p, be the two correspond-
ing eigenvalues for Al and A~; thus we have

Av = (M+ J42)V.

Consequently, the eigenvalue of A corresponding to V is

P= P1+P2.

The matrix A, has (M–2) tridiagonal blocks of order (AT-2),

where all are identical; let A 1’ be such a block. The eigenvalues pl of
A, are (M– 2) times the eigenvalues of Al’:

y –1

–1 2 –1

. .

A{ = . . .

. . .

–1 2 –1

–1 2

The eigenvalues of the matrix A,’ are

N–2

kII
~,k’ = 2 — 2 CQS——— , l<k<N–2.

N–1

In the matrix Aj, by permutations of rows and columns, it is

possible to reduce AZ to a band matrix X, like Al.

In order to avoid the tedious calculations by permutations, it is

possible to find a faster process to transform A z into ~z. One chooses
another variable changing ~(1, ~) =X,*, with i = (M— 2 ) (J—2)
+1–1.

The system (1) is then written (A )*(X)*= (1?)*. The physical

problem is unchanged, so that the solution is the same. The solution
vector (X) * is simply written on a new set of coordinate vectors.
A and A * represent the same linear application; consequent y, they
are similar and therefore have the same eigenvalues.

This time, A* can be split into two matrices AI* and A,*, where

Al” originates from the vertical lines and .42* from the horizontal
lines and A*= AI*+A2*.

A,* has (N– 2) diagonal blocks .4,’” similar to Al’) but of order
M–2.
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Fig. 2. Matrix A

Here, we can also say that ~’, the eigenvalue of A * corresponding

to V, can be written P*= P1*+Au*, where M* and W* are the eigen-
values corresponding to the eigenvectors for the matrices AI* and

Az*.
~1* is one of the values 2–2 cos (Z~)/(M–1), 1<15M–2,

depending only on M characterizing the vertical dimension of the

box, since AI* originates from the vertical lines of the rectangular box.
A and A * having the same eigenvalues, we necessarily have ~ = P*

or~l+~Z=pl*+~l*; pz and M* depend only on M; pl and Wjdepend

only on N. Then this relation is verified whatever M and N are if

~z=M* and UI =PZ*.
So for finding p we shall use either the writing -4 or A * of the

matrix, accordingly, as it is easier to calculate the eigenvalues of AI

and AZ or of AI* and A~*.
From (4), we have

kII III
—+cos —

cOs N–l M –T
~k = ‘—————

2

from which we have the inquired value for k~~~:

II II
Cos ——— + Cos ———

N–1 M–1
Ajlf = ———~———— .

B. Suspended Miwostrip Coupler

Let us introduce in the initial box a thin pIate of dielectric of

permittivity e,. This plate supports two strips of negligible thickness
(Fig. 1).

The various coefficients of the matrix A are modified. The calcu-

lations of the eigenvalues of A would be made by the classical
methods, using iterative processes (radius of convergence, Rayleigh
quotient, etc. [12 ], [13 ]). Meanwhile, these methods are compli-

cated and as soon as M and N are of the order of some tens, the time
of calculation becomes extensive. Moreover, they are convenient
only if the eigenvalues are not degenerate or 2 X 2 opposite, which is
just the case here. Therefo;e, we have looked at a method alldwiog

us to directly give a very good approximation of q.w by trying to
calculate explicitly the eigenvalues of matrix A.

This can be made by qoticing that the introduction of the strip
has an effect in the system (1) only on the relations between the

terms of a same row, fihereas the introduction of the dielectric
modifies only the coefficients of the terms of a same column, for the
crossing of the two air-dielectric interfaces.

for an empty box.

CIW)(!J-2)

The symmetrization of the problem introduces, like supple-
mentary unknowns, the potentials of the points corresponding to

~= 1 (Fig, 1). Then each horizontal line has (N– 1) nodes. We have
(M–2) (N– 1) unknowns. Hence, Al consists of (M–2) blocks

like Al’:

2 –2

–1 2 –1

. . .

Al’ = . . .

. . .

–1 2 –1

–1 2

2 –1

–1 2 –1

. . .
!

A ,“ = . . .

. . .

–1

–1 2

N–1

(N–1)–N,

E~ect of the Strip: The introduction of the strip, in the case of a

coupler, leaves out 2 X N, unknowns, because the potentials on the
conductors are fixed to + 1 in the case of the even mode and to ~ 1

in the case of the odd mode.

In A (Fig. 3), we substitute 2 X N, elements of the main diagonal
by 1, the other elements of the corresponding rows all being nulls.
These terms are those of the NI first rows of the Kth and (K+~ – l)th
blocks of the matrices AI and Az.

The elements aM of A, equal to 1, give, after the expansion of the
determinant 11A–P U\\, with respect to rows having only terms equal

to 1, 2 X N1 times the eigenvalue 4 =1. According to relation (4),
this corresponds to 2 X NI’ times the eigenval ue x = O for the matrix
M. As we research kma,, these eigenvalues can be excluded, and also

th~ corresponding diagonal terms of A.

Then, all the other eigenvalues of A, will be (M–4) times the
eigellvaiues of Al’, plus two times the eigenvalues of A I“.

We obtain, for Mk’, eigenvalues of AI’:

n + 2kII
pm’ = 2 — 2 Cos

2(N – 1) ‘
O<k<N–2.
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Fig. 3. Matrix .4 for a suspended microstrip coupler.

We require the smallest possible value of m’ to make ~ the high-
est one (4). Thus

II
/.llmxn’ = 2 — 2 Clxj ——— .

2N–2

The eigenvalues of Al” are

/.41” = 2 – 2 Cos ~fFN7 I

Plm, n” = 2 – 2 Cos ~—:—N7 .

So we take

l< ’k< N–N, – and II&t!::A;-

where 2N— 2 is always higher than N—N~.
Effect of the Dielectric: The introduction of the dielectric modifies

the relations between the potentials of adjacent nodes [11 ], but only
the coefficients of the terms flanking the central point on the same

vertical Ii nes are modified. The matrix AI stays unchanged. On] y A z
will have some elements, depending on the relative permittivity of
dielectric e,.

Here, we use the rem-esentation A,*, instead of Az: AI* has N– 1
blocks of order M–2. After elimination of rows containing only 1 on
the main diagonal, the eigenvalues of AI* will be NI times the eigen-

values of

A{

A;’

A J!,

see Fig. 4, and (N— 1) —NI times the eigenvalues of Az’’” (Fig. 5)
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If

(

n II
q5=inf ~ _ ——

K–l’L–l’M– K–L–l )

K-2 rws

L-2 rOW~

I-K-I. rows

mttr N-d

the smallest eigenvalue of Az’, Az”, and Az’” is w,,,’= 2 – 2 cos @

Az’’” gives, for the smallest eigenvalue,

~2 ~inf~ = 2–2COS4’

where O’ is the first nonnull root of the equation

F(@’) = sin (M – 1)+’ – a’ sin (M – 2L + 1)+’

+ a[sin (M – 2K + 1)+’ – sin (ill – 2K – 2L + 3)@] = O
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Iteration
@ Number = IT Precision 6,

Empty box 1.79148 45 2.5.10–2 1
Corrected value 1.856725 36 1.25.10–1 1

Gain for the iteration number—20 percent.
Gain for the precision—ratio 20.
Remarks about this corrected value of @—Choosing values separated

by about one part in a thousand and for the same number of iterations,
the precision is 10-20 times below.

TABLE II

TEST1 = 10–8; EVEN MODE

Iteration
u Number = IT Precision @

coo(~ calculated
for the empty
box)

w (~ strip cor-
rected)

uz (w strip and
dielectric cor-
rected)

W
~1
W
~o
al
~z
ml
~1
W

1.79148

1.856725

1.856725
1.79148
1.856725
1.8651
1.79148
1.856725
1.876531
1.79148
1. S56725
1.886921

31

32

32
30
32
34
28
32
36
27
29,
43

2.7.10–2

3.25.10–s

3.25.10–3
2.6.10–!
3. 10–3

1.5.10–3
2.8s.lo-~
2.10-3

4.3.10–4
2.64.10–2
6.8.10–3
2.86.10–$

1

1

1
2
2
2
4
4
4
8
8
8

TABLE III

TESTI = 10-3; EVEN MoDE—,, = 4

a! WI= 1.79648 QI= 1.856725 w=l .876531

Precision 9.4.10–3 1.56. 10-? 4.3.10–4

Gain for precision = factor 22.

ROW u

&ow K*L.4

ln=M-2

T.4BLE IV

EVEN MonE—+ = 4

TestZ = 10–’2 Testz = 10–3
——— —— ————————

u IT Precision IT Precision
-—— ——.——

@o 36 9.42.10–8 52 8.8s.10–4

@l 17 6.46.10–8 39 7.76. 10–4
15 2.4.10–3 36 4.3.10–4

Gain ?;r the
iteration
number 58 percent 31 percent

TABLE V

EVEN MODE—G = 4

Precision 2.4.10-3 4.3.10–4
.—— ——— ——— — _—— ——— ———

Iteration 515 660 without accelerating
number factor

15 36 with ao~t

with

So ~tmiu =2 –2 cos O, with O=inf (@.@’).

Total Effect-Strip and Dielectric: Then we make the supple-
mentary assumption that the eigenvectors of A 1 and A z remain the
same, as in the case of an empty box. This will be a good approxima-

tion, as long as the number of disturbed nodes will be small before

the total number of nodes.

Under these conditions, we can write, for the whole system

studied,

/Anin= PI min+ j12 mi. and
[ 2iV~ 2 + Cosol’

k,. = ; Cos ——

1I 1. NUMERICAL RESULTS

The effect of the new value of uc.t deduced by all that precedes
has been tested for some configurations. As an example, the results
for M =39, N= 23, N,= 5, K = 10, and L = 9 are given in Tables I–V.
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For this configuration and c,= 4, we have obtained

zoo = 47.75 Q, 2,, = 127.2ti.

To have an idea of the ‘precision of the potenfial calculation, we have

calculated the capacitance per unit length of the stripline by appli-

cation of Gauss’ theorem for two surfaces. The first, near the strip,
gives Cz, and the second, near theexternal walls of the box, gives CO.

We call relative precision of the calculation the ratio [C~– CO]/CZ.
Table Igivesdata forasimple line when westop the calculation

if the highest difference between the potentials of the corresponding
nodes for two successive iterations is smaller than a fixed value, called

“testl.”
Table IIgives data foramicrostrip coupler. Here, Cristhecapac-

itance calculated for a surface surrounding one of the two strips, for

instance, thepositively charged onein the odd mode. COis calculated

for a surface containing all the other conductors.
Table IIIgives results forthesame number of iterations (36) in

the case of the coupler with e,= 4.
Conversely, in Table IV, we give the results when we stop the

computation if the ‘{relative precision” is smaller than a fixed value

called “testZ.”
It should be noted that for very small differences (a few percent)

in the value of co, the number of iterations and the precision are per-

ceptibly different. This effect has been observed and justified by
some authors [20]–[24].

In Table V, asan illustration of our method against the Gauss–
Seidel one, we give the data as for Table IV, with the best accelerat-

ing factor and without the accelerating factor.

IV. CONCLUSION

From these results, it can be seen that the approximations made

forthe calculation of anaccelerating factor are very good. ln each

case we have tested, we have obtained an important amelioration

either in the computational time or in precision of calculation, often

for both.

The precision of the finite-differences method is sufficiently good,

as can be seen by comparison with results given by others.

We have used two types of results. The first ones arethoseob-

tained by Cohn’s formulas [11]. In our program, making e,=l and
N>>M, L, N,, we must approach Cohn’s case.

For example, we have obtained the following:

Z(JO Zo. zoo Zo,
(calcu- (calcu- (Cohn) (Cohn)

A4NKLN1 lated) lated)

21 101 95 6 43.3 143.7 45.6 148.8
21 101 9516 17.7 73.6 18.1 74.8
51 101 24 5 6 46.5 239.2 47.9 249.3
51 101 24 5 16 19.7 153 20.1 158.2
53 132 24 7 18 24.7 137.5 25 143.8

We have made 17 comparisons between our results and those cal-

culated using Cohn’s formula. Themean accuracy of these results is
about 2 percent.

Second, experimental results have been obtained by the Centre

National d’Etudes des T414communications, Lannion, France. Com-

parison with these results gives an accuracy of 4 or 5 percent. For

example, we have the following:

zoo Zoe z 00 ZQ.
(calcu- (calcu- (experi- (expel i-

MN KLNI lated) lated) mental) mental)
.—-— ——— ——— —_— —_— —

18 44 2 16.15

72 88 3; 4 1$ 11

16.17

115 10.05 111.3

The only point which can be noted in opposition to this method is

that for realistic problems, a computer of great capacity is necessary.
Finally, the finite-differences method appears in many aspects to

be the most simple to use for the calculations of microstrip parameters
in the TE M approximation.

This work allows a reduction of the computational time necessary

in the finite-differences method using the SOR technique of 20-60

percent according to the desired accuracy.
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On Uniform Multimode Transmission Lines

CLAYTON R. PAUL

Abstract—In a recent short paper [1], amethod for constructing

solutions to the classical uniform rnultiwire transmission-line equa-
tions was given which was intended to include the case of partial

eigenvalue degeneracy. This development appears to be incorrect

and a correct development will be given. In addition, a complete

method for constructing the matrix chain parameters of a section of

line will be presented.

We will consider n uniform transmission lines described by the
matrix partial differential equations

Ix&t)
– Ri(zt, t) – L ~($~

8% =

~i(x, t) au(x, t)—_—— – Gv(x, t) – C ~
& –

(la)

(lb)

where v (x, t) and i(x, t) are n X 1 vector functions of the transmission-
line voltages with respect to some reference conductor (usually a

ground plane) and currents, respectively, as a function of distance cc

along the line and time t. The matrices R, L, G, and C are mXtr

matrices independent of x. Nonuniform transmission lines would have
R, G, L, and C as functions of x. Usually, R is diagonal and G, L, and
C are symmetric (for lines emersed in linear, isotropic media). By
invoking the Laplace transform with respect to time, we arrive at the
equations

dV(x)

dx
— = –21(.)

dI(x)

dx
– Yv(x)

(2a)

(2b)
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