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Faster Impedance Estimation for Coupled Microstrips
with an Overrelaxation Method

R. DAUMAS, D. POMPEI, E. RIVIER, axp A. ROS

Abstract—Using the Frankel-Young method [1], [2], fast es-
timation of the potential distribution for a microstrip structure is ob-
tained when an accelerating factor « is introduced in the finite-
differences (relaxation) method. It is possible to calculate such a
factor by an iterative technique, but the time of computation needed
to find w annihilates the theoretical gain.

In this short paper, the authors present a method which gives an
analytical expression for . The realistic case examined here, as an
illustration, is that of the suspended microstrip couplers for which
odd and even impedances are the interesting parameters.

Given an analytical expression for w, the overrelaxation method
appears as a very powerful and attractive method for finding the
solution of any type of microstrip structure.

I. INTRODUCTION

The integrated technology using microstrips provides new pos-
sibilities for microwave designs. A very important one is the realiza-
tion of compact low-cost dispersive lines used as group-velocity cor-
rectors for digital telecommunications. The basic component of such
a system can be reduced to a microstrip coupler.

In the last few years, several authors [3]-[7] have treated some
particular problems using different methods, but they are generally
complicated and applicable to particular geometrical cases.

A solution using finite differences has been proposed by Green [8]
and others. An application has been given by Brenner [9] to the
simple case of the suspended microstrip line and by Gupta [10] to
the idealized problem considered by Cohn [3], i.e., the suspended
coupler in a homogeneous dielectric such as air. That problem is
purely theoretical, with no substrate sustaining the strips.

However, as emphasized by Smith [6], the methods using finite
differences appear as inadequate because the very fine mesh required
for the accuracy leads to difficulties in the convergence. Clearly, it
means that the computing time becomes prohibitive and the com-
puter memory becomes saturated.

Nevertheless, the use of the finite-differences method should
become a very fruitful approach if an accelerating factor taking into
account the geometry of the problem could be injected in the pro-
gram.

In this short paper, the problem of the research of such a factor
is solved and applied to the case of the suspended coupler with a
dielectric substrate of constant e, sustaining the strips.

In the finite-differences method, we define in a geometrical domain
the potentials at the nodes of a net (Fig. 1). The relations between
all the potentials can be written

(4)(®) = (B). (1)
System (1) can be solved by an iterative process [1], [2], [11]
writing
W, = M¥, 4 C. (2)
The Frankel-Young method introduces the accelerating factor w.
An optimal value of & —wep gives the fastest convergence. We have
2

TFvi—nn ®)

Wopt =
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Fig, 1. Geometrical parameters definition.
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where u; are the eigenvalues and aw: are the diagonal elements of 4.

II. APPLICATIONS OF THE FRANKEL-YOUNG METHOD
TO A SUSPENDED MICROSTRIP COUPLER

A. Resolution of the Problem for an “Empty Box” [11]

Using the finite-differences method and for the second-order
approximation, the Laplace’s equation is reduced to

W, D) =i[@U, T-0)+¥ (I, T+ 1)+ -1, N)+¥(I+1, 0] (5)

The variable changing (I, J) =X,, withi=(N—-2)(T —-2)+J —1,
allows us to have the unknowns indexed by a continuous sequence
(Fig. 1).

The 7th equation of the system (1) will be written

4X,— X1 — X —Xoyv_o— X N42=0, 1<i<(M-2)(N—-2).

The matrix 41 (Fig. 2) can always be split into two symmetrical tri-
diagonals—matrices 4; and A., the main diagonal elements being
aix/2 such that 4 =4+ A4..

It can be shown that 4; and A: have the same eigenvectors. Let
V be one of these eigenvectors and g; and us be the two correspond-
ing eigenvalues for 4; and A.; thus we have

AV = (1 + pa)V.
Consequently, the eigenvalue of 4 corresponding to V is
= p1 -+ pa.

The matrix A, has (M —2) tridiagonal blocks of order (N¥N—2),
where all are identical; let 4," be such a block. The eigenvalues y; of
Ay are (M —2) times the eigenvalues of A,":

27 -1
-1 2 -1

A1’=

-1 2 -1
-1 2iN-2

The eigenvalues of the matrix 4," are

. 1<E<N -2

uir’ = 2 — 2 cos —@
N

In the matrix 4., by permutations of rows and columns, it is
possible to reduce 4 to a band matrix 4 like 4;.

In order to avoid the tedious calculations by permutations, it is
possible to find a faster process to transform As into 4». One chooses
another variable changing ¢(I, J)=X.* with =M —-2)(J-2)
+I—1.

The system (1) is then written (4)*(X)*=(B)*. The physical
problem is unchanged, so that the solution is the same. The solution
vector (X)* is simply written on a new set of coordinate vectors.
A and A represent the same linear application; consequently, they
are similar and therefore have the same eigenvalues.

This time, 4* can be split into two matrices 4,* and 4.*, where
A;* originates from the vertical lines and 4:* from the horizontal
lines and 4% =4,*44,*.

A1* has (N —2) diagonal blocks 4,'* similar to 4., but of order
M-—2.
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Here, we can also say that u*, the eigenvalue of A* corresponding
to V, can be written p* =m*+u.*, where 1 * and w* are the eigen-
values corresponding to the eigenvectors for the matrices 4,* and
As*.

wm* is one of the values 2—2 cos (II)/(M—1), 1<I<M-2,
depending only on M characterizing the vertical dimension of the
box, since A;* originates from the vertical lines of the rectangular box.

A and A* having the same eigenvalues, we necessarily have p=u*
or mi+ue=m™*+u*; u2 and wm* depend only on M; w and pe depend
only on N. Then this relation is verified whatever M and N are if
H2 =M1* and =M2*-

So for finding u we shall use either the writing 4 or 4* of the
matrix, accordingly, as it is easier to calculate the eigenvalues of 4;
and 4, or of 4,* and A.*.

From (4), we have

311 i

cos TSy

AN =

2

from which we have the inquired value for Amax:

II + II
s T
Ccos N1 08 1
Mo = —— o

2

B. Suspended Microstrip Coupler

Let us introduce in the initial box a thin plate of dielectric of
permittivity e.. This plate supports two strips of negligible thickness
(Fig. 1).

The various coefficients of the matrix 4 are modified. The calcu-
lations of the eigenvalues of A4 would be made by the classical
methods, using iterative processes (radius of convergence, Rayleigh
quotient, etc. [12], [13]). Meanwhile, these methods are compli-
cated and as soon as M and N are of the order of some tens, the time
of calculation becomes extensive. Moreover, they are convenient
only if the eigenvalues are not degenerate or 2 X2 opposite, which is
just the case here. Therefore, we have looked at a method allowing
us to directly give a very good approximation of 5y by trying to
calculate explicitly the-eigenvalues of matrix 4.

This can be made by noticing that the introduction of the strip
has an effect in the system (1) only on the relations between the
terms of a same row, whereas the introduction of the dielectric
modifies only the coefficients of the terms of a same column, for the
crossing of the two air—dielectric interfaces.
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0= (M-2)(v-2)

Matrix A for an empty box.

The symmetrization of the problem introduces, like supple-
mentary unknowns, the potentials of the points corresponding to
J=1 (Fig. 1). Then each horizontal line has (V—1) nodes. We have
(M —2)(N—1) unknowns. Hence, A; consists of (M —2) blocks
like A,':

2 —2
-1 2 -1
A =
-1 2-1
-1 2N -1
2 —1
-1 2 -1
All,=
—1
—1 2|V =1 - N,

Effect of the Strip: The introduction of the strip, in the case of a
coupler, leaves out 2 X N; unknowns, because the potentials on the
conductors are fixed to 41 in the case of the even mode and to +1
in the case of the odd mode.

In A (Fig. 3), we substitute 2 X NV, elements of the main diagonal
by 1, the other elements of the corresponding rows all being nulls.
These terms are those of the N, first rows of the Kth and (K4-L —1)th
blocks of the matrices 4, and A4,.

The elements aw of 4, equal to 1, give, after the expansion of the
determinant ||4 —pU}}, with respect to rows having only terms equal
to 1, 2X N, times the eigenvalue p=1. According to relation (4),
this corresponds to 2 X N times the eigenvalue A=0 for the matrix
M. As we research Amax, these eigenvalues can be excluded, and also
the corresponding diagonal terms of 4.

Then, all the other eigenvalues of 4; will be (M —4) times the
eigenvalues of A4/, plus two times the eigenvalues of A4".

We obtain, for uy’, eigenvalues of A,':

11 -+ 2411

— 0Lk N—-2
2(N —1) -

uw = 2 — 2c¢os
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We require the smallest possible value of uiz’ to make A the high-
est one (4). Thus

I
=2—-2co8———— "
2N =2

’
M1 min
The eigenvalues of 4" are

kI
w'' =2 —2cos—m—" 1<kE<N-N;—1 and

N —-N,

ML ”=2——2c05-—H——-
' N — N,

So we take

2—-2 1
H1min OS2
where 2N —2 is always higher than N —N1.

Effect of the Dielectric: The introduction of the dielectric modifies
the relations between the potentials of adjacent nodes [11], but only
the coefficients of the terms flanking the central point on the same
vertical lines are modified. The matrix Ay stays unchanged. Only 4.
will have some elements, depending on the relative permittivity of
dielectric e,.

Here, we use the representation 4,*, instead of 4s; A1* has N—1
blocks of order M —2. After elimination of rows containing only 1 on
the main diagonal, the eigenvalues of A4;* will be N; times the eigen-
values of

44
A 2/I
A 2//I

see Fig. 4, and (N—1) —N; times the eigenvalues of 4.’ (Fig. 3).
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Matrix A for a suspended microstrip coupler.
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the smallest eigenvalue of 4./, 4., and A"’ is pan’'=2—2 cos ¢.
A" gives, for the smallest eigenvalue,
g g

p2min’ =2 — 2 cos ¢’
where ¢’ is the first nonnull root of the equation
F(¢') = sin (M — 1)¢/ — a?sin (M — 2L + 1)¢’
+ afsin (M — 2K + 1)¢/ — sin (M — 2K — 2L+ 3)¢'] =0



SHORT PAPERS

2 4
124

555

ZE Ny s
9999 Act, 458, - - w e e e ROW K

>
N
1l

-91 2"1

-1 2

AN\

LA - NOW Keled
oy oM - tle
neM-2
Fig. S.
TABLE I TABLE IV
TEST, =103 EVEN MODE—e¢, =4
Iteration Testg=1072 Testz= 1073
w Number=IT Precision €
Empty box 1.79148 45 2.5-1072 1 2] IT Precision IT Precision
Corrected value 1.856725 36 1.25-107¢ 1
wo 36 9.42-1073 52 8.85-107¢
Gain for the iteration number—20 percent. @1 17 6.46-10" 39 7.76- 107+
Gain for the precision—ratio 20. ) 15 2.4:107° 36 4.3-107
Remarks about this corrected value of w—Choosing values separated Ga..m for. the
by about one part in a thousand and for the same number of iterations, iteration
the precision is 10-20 times below. number 58 percent 31 percent
TABLE 11
TABLE V
TesT;=1073; EVEN MODE
EVEN MODE—¢& =4
Iteration . _ —1
® Number=IT Precision & Precision 2.4-1073 4.3-10
wo (w calculated Iteration 515 660 without accelerating
for the empty number factor
box) 1.79148 3t 2.7-1072 1 15 36 with wopt
w; (w strip cor-
rected) 1.856725 32 3.25-10°3 1
we (w strip and .
dielectric cor- with
rected) 1.856725 32 3.25-1073 1 2¢ 1 —
wo 1.79148 30 2.6-107 2 =1 T,
wy 1.856725 32 3-1073 2 14+ e 1+ e
wy 1.8651 34 1.5-1073 2
o 1.79148 28 2.88-1072 4 S0 pigmin =2 —2 cos 8, with §=inf (¢-¢').
@1 1.856725 32 2-10 3_4 4 Total Effect—Strip and Dielectric: Then we make the supple-
22 ;%?221 ‘23? 3241(1)0_ g mentary assumption that the eigenvectors of 4, and A4; remain the
wr 1856725 29 6 8-10~ 3 same, as in the case of an empty box. This will be a good approxima-
@ 1.886921 43 2.86-10~ 3 tion, as long as the number of disturbed nodes will be small before
the total number of nodes.
Under these conditions, we can write, for the whole system
studied,
TABLE III
TEesT; = 1073; EVEN MODE—¢, =4 fmin = K1min T K2min and Amax = 2 [cosz—N 2 =+ cos 0].
@ wg=1.79648  w=1.856725  wy=1.876531 111, NUMERICAL RESULTS
Precision 9.4-1073 1.56-1072 4.3-1074 The effect of the new value of wept deduced by all that precedes

has been tested for some configurations. As an example, the results

Gain for precision=factor 22. for M =39, N=23, N;=5, K=10, and L =9 are given in Tables I-V.
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For this configuration and ¢ =4, we have obtained

Zoo = 4775Q,  Zo = 127.2Q.

To have an idea of the precision of the potential calculation, we have
calculated the capacitance per unit length of the stripline by appli-
cation of Gauss' theorem for two surfaces. The first, near the strip,
gives Cj, and the second, near the external walls of the box, gives Co.
We call relative precision of the calculation the ratio [C;~Cy]/Cr.

Table I gives data for a simple line when we stop the calculation
if the highest difference between the potentials of the corresponding
nodes for two successive iterations is smaller than a fixed value, called
“testy.”

Table 11 gives data for a microstrip coupler. Here, Cr is the capac-
itance calculated for a surface surrounding one of the two strips, for
instance, the positively charged one in the odd mode. Cy is calculated
for a surface containing all the other conductors.

Table 111 gives results for the same number of iterations (36) in
the case of the coupler with e, =4.

Conversely, in Table IV, we give the results when we stop the
computation if the “relative precision” is smaller than a fixed value
called “test,.” .

It should be noted that for very small differences (a few percent)
in the value of «, the number of iterations and the precision are per-
ceptibly different. This effect has been observed and justified by
some authors [20]-[24].

In Table V, as an illustration of our method against the Gauss—
Seidel one, we give the data as for Table IV, with the best accelerat-
ing factor and without the accelerating factor.

IV. ConcCLUSION

From these results, it can be seen that the approximations made
for the calculation of an accelerating factor are very good. In each
case we have tested, we have obtained an important amelioration
either in the computational time or in precision of calculation, often
for both, .

The precision of the finite-differences method is sufficiently good,
as can be seen by comparison with results given by others.

We have used two types of results, The first ones are those ob-
tained by Cohn’s formulas [11]. In our program, making ¢ =1 and
N>»M, L, N;, we must approach Cohn’s case.

For example, we have obtained the following:

Zyo Zoe Zoo Zoe

(calcu- (calcu- (Cohn) (Cohn)
M N K L N, lated) lated)
21 101 9 5 6 43.3 143.7 45.6 148.8
21 101 9 5 16 17.7 73.6 18.1 74.8
51 101 24 5 6 46.5 239.2 47.9 249.3
51 101 24 5 16 19.7 153 20.1 158.2
53 132 24 7 18 24.7 137.5 25 143.8

We have made 17 comparisons between our results and those cal-
culated using Cohn’s formula. The mean accuracy of these results is
about 2 percent.

Second, experimental results have been obtained by the Centre
National d’Etudes des Télécommunications, Lannion, France. Com-
parison with these results gives an accuracy of 4 or 5 percent. For
example, we have the following:

Zoo Zoe Zoo Zoge
(calcu- (calcu-  (experi- (experi-
M N K L Ny lated) lated) mental) mental)
18 44 9 2 6 16.15 16.17
72 88 35 4 19 11 115 10.05 111.3

The only point which can be noted in opposition to this method is
that for realistic problems, a computer of great capacity is necessary.

Finally, the finite-differences method appears in many aspects to
be the most simple to use for the calculations of microstrip parameters
in the TEM approximation.
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This work allows a reduction of the computational time necessary
in the finite-differences method using the SOR technique of 20-A0
percent according to the desired accuracy.
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On Uniform Multimode Transmission Lines
CLAYTON R. PAUL

Abstract-In a recent short paper [1], a method for constructing
solutions to the classical uniform multiwire transmission-line equa-
tions was given which was intended to include the case of partial
eigenvalue degeneracy. This development appears to be incorrect
and a correct development will be given. In addition, a complete
method for constructing the matrix chain parameters of a section of
line will be presented.

We will consider # uniform transmission lines described by the
matrix partial differential equations

ow(x, t) R _ ?i(fil_)

— = Ri(x,f) — L by (1a)

A0 o, g — D (1b)
dx

where v(x, £) and i(x, ¢) are # X1 vector functions of the transmission-
line voltages with respect to some reference conductor (usually a
ground plane) and currents, respectively, as a function of distance %
along the line and time 7. The matrices R, L, G, and C are nXn
matrices independent of x. Nonuniform transmission lines would have
R,G, L, and C as functions of x. Usually, R is diagonal and G, L, and
C are symmetric (for lines emersed in linear, isotropic media). By
invoking the Laplace transform with respect to time, we arrive at the
equations

W _ ZI(x) (2a)
dx

d_[(af)_ = — YV{(z) (2b)
dx
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